Determining the dosimetric accuracy of deep learning-based fully automated registration-segmentation approach for thoracic cancer organs-at-risk contouring Meeting Abstract


Authors: Choi, C.; Thor, M.; Jiang, J.; Rimner, A.; Veeraraghavan, H.
Abstract Title: Determining the dosimetric accuracy of deep learning-based fully automated registration-segmentation approach for thoracic cancer organs-at-risk contouring
Meeting Title: 65th Annual Meeting of the American Society for Radiation Oncology (ASTRO 2023)
Journal Title: International Journal of Radiation Oncology, Biology, Physics
Volume: 117
Issue: 2 Suppl.
Meeting Dates: 2023 Oct 1-3
Meeting Location: San Diego, CA
ISSN: 0360-3016
Publisher: Elsevier Inc.  
Date Published: 2023-10-01
Start Page: e656
End Page: e657
Language: English
DOI: 10.1016/j.ijrobp.2023.06.2087
PROVIDER: EBSCOhost
PROVIDER: cinahl
DOI/URL:
Notes: Meeting abstract: 3438 -- Source: Cinahl
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Andreas Rimner
    526 Rimner
  2. Maria Elisabeth Thor
    149 Thor
  3. Jue Jiang
    78 Jiang
  4. Crystal Choi
    6 Choi