Genetic susceptibility to nonalcoholic fatty liver disease and risk for pancreatic cancer: Mendelian randomization Journal Article


Authors: King, S. D.; Veliginti, S.; Brouwers, M. C. G. J.; Ren, Z.; Zheng, W.; Setiawan, V. W.; Wilkens, L. R.; Shu, X. O.; Arslan, A. A.; Beane Freeman, L. E.; Bracci, P. M.; Canzian, F.; Du, M.; Gallinger, S. J.; Giles, G. G.; Goodman, P. J.; Haiman, C. A.; Kogevinas, M.; Kooperberg, C.; LeMarchand, L.; Neale, R. E.; Visvanathan, K.; White, E.; Albanes, D.; Andreotti, G.; Babic, A.; Berndt, S. I.; Brais, L. K.; Brennan, P.; Buring, J. E.; Rabe, K. G.; Bamlet, W. R.; Chanock, S. J.; Fuchs, C. S.; Gaziano, J. M.; Giovannucci, E. L.; Hackert, T.; Hassan, M. M.; Katzke, V.; Kurtz, R. C.; Lee, I. M.; Malats, N.; Murphy, N.; Oberg, A. L.; Orlow, I.; Porta, M.; Real, F. X.; Rothman, N.; Sesso, H. D.; Silverman, D. T.; Thompson, I. M. Jr; Wactawski-Wende, J.; Wang, X.; Wentzensen, N.; Yu, H.; Zeleniuch-Jacquotte, A.; Yu, K.; Wolpin, B. M.; Duell, E. J.; Li, D.; Hung, R. J.; Perdomo, S.; McCullough, M. L.; Freedman, N. D.; Patel, A. V.; Peters, U.; Riboli, E.; Sund, M.; Tjønneland, A.; Zhong, J.; Van Den Eeden, S. K.; Kraft, P.; Risch, H. A.; Amundadottir, L. T.; Klein, A. P.; Stolzenberg-Solomon, R. Z.; Antwi, S. O.
Article Title: Genetic susceptibility to nonalcoholic fatty liver disease and risk for pancreatic cancer: Mendelian randomization
Abstract: BACKGROUND: There are conflicting data on whether nonalcoholic fatty liver disease (NAFLD) is associated with susceptibility to pancreatic cancer. Using Mendelian randomization (MR), we investigated the relationship between genetic predisposition to NAFLD and risk for pancreatic cancer. METHODS: Data from genome-wide association studies (GWAS) within the Pancreatic Cancer Cohort Consortium (PanScan; cases n = 5,090, controls n = 8,733) and the Pancreatic Cancer Case Control Consortium (PanC4; cases n = 4,163, controls n = 3,792) were analyzed. We used data on 68 genetic variants with four different MR methods [inverse variance weighting (IVW), MR-Egger, simple median, and penalized weighted median] separately to predict genetic heritability of NAFLD. We then assessed the relationship between each of the four MR methods and pancreatic cancer risk, using logistic regression to calculate ORs and 95% confidence intervals (CI), adjusting for PC risk factors, including obesity and diabetes. RESULTS: No association was found between genetically predicted NAFLD and pancreatic cancer risk in the PanScan or PanC4 samples [e.g., PanScan, IVW OR, 1.04; 95% confidence interval (CI), 0.88-1.22; MR-Egger OR, 0.89; 95% CI, 0.65-1.21; PanC4, IVW OR, 1.07; 95% CI, 0.90-1.27; MR-Egger OR, 0.93; 95% CI, 0.67-1.28]. None of the four MR methods indicated an association between genetically predicted NAFLD and pancreatic cancer risk in either sample. CONCLUSIONS: Genetic predisposition to NAFLD is not associated with pancreatic cancer risk. IMPACT: Given the close relationship between NAFLD and metabolic conditions, it is plausible that any association between NAFLD and pancreatic cancer might reflect host metabolic perturbations (e.g., obesity, diabetes, or metabolic syndrome) and does not necessarily reflect a causal relationship between NAFLD and pancreatic cancer. ©2023 American Association for Cancer Research.
Keywords: single nucleotide polymorphism; genetics; polymorphism, single nucleotide; pancreatic neoplasms; genetic predisposition to disease; genome-wide association study; obesity; pancreas carcinoma; pancreas tumor; genetic predisposition; nonalcoholic fatty liver; pancreatic carcinoma; mendelian randomization analysis; humans; human; non-alcoholic fatty liver disease
Journal Title: Cancer Epidemiology Biomarkers and Prevention
Volume: 32
Issue: 9
ISSN: 1055-9965
Publisher: American Association for Cancer Research  
Date Published: 2023-09-01
Start Page: 1265
End Page: 1269
Language: English
DOI: 10.1158/1055-9965.Epi-23-0453
PUBMED: 37351909
PROVIDER: scopus
PMCID: PMC10529823
DOI/URL:
Notes: Article -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Irene Orlow
    247 Orlow
  2. Robert C Kurtz
    196 Kurtz
  3. Mengmeng   Du
    74 Du