Detection of invasive lobular carcinoma using an artificial intelligence algorithm based on genetic ground truth Meeting Abstract


Authors: Pareja, F.; Dopeso, H.; Wang, Y.; Goldfinger, M.; Gazzo, A.; Derakhshan, F.; da Silva, E. M.; Selenica, P.; Basili, T.; Danielle, S.; Brown, D.; Sue, J.; Ye, Q.; Da Cruz Paula, A.; Banerjee, M.; Lee, M.; Godrich, R.; Casson, A.; Weigelt, B.; Wen, H.; Brogi, E.; Hanna, M.; Kunz, J.; Kanan, C.; Klimstra, D.; Fuchs, T.; Reis-Filho, J.
Abstract Title: Detection of invasive lobular carcinoma using an artificial intelligence algorithm based on genetic ground truth
Meeting Title: 112th Annual Meeting of the United States & Canadian Academy of Pathology (USCAP): Facing the Unknown
Journal Title: Laboratory Investigation
Volume: 103
Issue: 3 Suppl.
Meeting Dates: 2023 Mar 11-16
Meeting Location: New Orleans, LA
ISSN: 0023-6837
Publisher: Nature Publishing Group  
Date Published: 2023-03-01
Start Page: S194
Language: English
ACCESSION: WOS:000990969800206
PROVIDER: wos
DOI: 10.1016/j.labinv.2023.100081
Notes: Meeting Abstract: 205, in the section "Breast Pathology" -- MSK authors Danielle Share's first and last names are reversed on the original publication -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics