A fast convergent ordered-subsets algorithm with subiteration-dependent preconditioners for PET image reconstruction Journal Article


Authors: Guo, J.; Schmidtlein, C. R.; Krol, A.; Li, S.; Lin, Y.; Ahn, S.; Stearns, C.; Xu, Y.
Article Title: A fast convergent ordered-subsets algorithm with subiteration-dependent preconditioners for PET image reconstruction
Abstract: We investigated the imaging performance of a fast convergent ordered-subsets algorithm with subiteration-dependent preconditioners (SDPs) for positron emission tomography (PET) image reconstruction. In particular, we considered the use of SDP with the block sequential regularized expectation maximization (BSREM) approach with the relative difference prior (RDP) regularizer due to its prior clinical adaptation by vendors. Because the RDP regularization promotes smoothness in the reconstructed image, the directions of the gradients in smooth areas more accurately point toward the objective function's minimizer than those in variable areas. Motivated by this observation, two SDPs have been designed to increase iteration step-sizes in the smooth areas and reduce iteration step-sizes in the variable areas relative to a conventional expectation maximization preconditioner. The momentum technique used for convergence acceleration can be viewed as a special case of SDP. We have proved the global convergence of SDP-BSREM algorithms by assuming certain characteristics of the preconditioner. By means of numerical experiments using both simulated and clinical PET data, we have shown that the SDP-BSREM algorithms substantially improve the convergence rate, as compared to conventional BSREM and a vendor's implementation as Q.Clear. Specifically, SDP-BSREM algorithms converge 35%-50% faster in reaching the same objective function value than conventional BSREM and commercial Q.Clear algorithms. Moreover, we showed in phantoms with hot, cold and background regions that the SDP-BSREM algorithms approached the values of a highly converged reference image faster than conventional BSREM and commercial Q.Clear algorithms. © 1982-2012 IEEE.
Keywords: positron emission tomography; tomography, x-ray computed; algorithms; algorithm; positron-emission tomography; phantoms, imaging; image processing, computer-assisted; image processing; electrons; image reconstruction; positrons; phantoms; convergence; procedures; set theory; germanium; imaging phantom; cancer; iterative methods; maximum principle; x-ray computed tomography; images reconstruction; ordered-subsets; preconditioner; relative difference prior; germaniums (ge); preconditioners; software algorithms
Journal Title: IEEE Transactions on Medical Imaging
Volume: 41
Issue: 11
ISSN: 0278-0062
Publisher: IEEE  
Date Published: 2022-11-01
Start Page: 3289
End Page: 3300
Language: English
DOI: 10.1109/tmi.2022.3181813
PUBMED: 35679379
PROVIDER: scopus
PMCID: PMC9810102
DOI/URL:
Notes: Article -- Export Date: 1 December 2022 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors