Abstract: |
Quantitative imaging biomarkers (QIBs) hold enormous potential to improve the efficiency of clinical trials that use standard-of-care CT imaging. Examples of QIBs include size, shape, intensity histogram characteristics, texture, radiomics, and more. There is, however, a well-recognized gap between discovery and the translation to practice of QIBs, which is driven in part by concerns about their repeatability and reproducibility in the diverse clinical environment. Our goal is to characterize QIB repeatability and reproducibility by using virtual imaging clinical trials (VICTs) to simulate the full data pathway. We start by estimating the probability distribution functions (PDFs) for patient-, disease-, treatment-, and imaging-related sources of variability. These are used to forward-model sinograms that are reconstructed and then analyzed by the QIB under evaluation in a virtual imaging pipeline. By repeatedly sampling from the variability PDFs, estimates of the bias, variance, repeatability and reproducibility of the QIB can be generated by comparison with the known ground truth. These estimates of QIB performance can be used as evidence of the utility of QIBs in clinical trials of new therapies. © 2022 SPIE. |