Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer Journal Article


Authors: Vanguri, R. S.; Luo, J.; Aukerman, A. T.; Egger, J. V.; Fong, C. J.; Horvat, N.; Pagano, A.; Araujo-Filho, J. A. B.; Geneslaw, L.; Rizvi, H.; Sosa, R.; Boehm, K. M.; Yang, S. R.; Bodd, F. M.; Ventura, K.; Hollmann, T. J.; Ginsberg, M. S.; Gao, J.; MSK MIND Consortium; Hellmann, M. D.; Sauter, J. L.; Shah, S. P.
Article Title: Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer
Abstract: Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunotherapy response using a cohort of 247 patients with advanced NSCLC with multimodal baseline data obtained during diagnostic clinical workup, including computed tomography scan images, digitized programmed death ligand-1 immunohistochemistry slides and known outcomes to immunotherapy. Using domain expert annotations, we developed a computational workflow to extract patient-level features and used a machine-learning approach to integrate multimodal features into a risk prediction model. Our multimodal model (area under the curve (AUC) = 0.80, 95% confidence interval (CI) 0.74–0.86) outperformed unimodal measures, including tumor mutational burden (AUC = 0.61, 95% CI 0.52–0.70) and programmed death ligand-1 immunohistochemistry score (AUC = 0.73, 95% CI 0.65–0.81). Our study therefore provides a quantitative rationale for using multimodal features to improve prediction of immunotherapy response in patients with NSCLC using expert-guided machine learning. © 2022, The Author(s).
Journal Title: Nature Cancer
Volume: 3
Issue: 10
ISSN: 2662-1347
Publisher: Nature Research  
Date Published: 2022-10-01
Start Page: 1151
End Page: 1164
Language: English
DOI: 10.1038/s43018-022-00416-8
PUBMED: 36038778
PROVIDER: scopus
PMCID: PMC9586871
DOI/URL:
Notes: Article -- Export Date: 1 November 2022 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Michelle S Ginsberg
    235 Ginsberg
  2. Jianjiong Gao
    132 Gao
  3. Matthew David Hellmann
    411 Hellmann
  4. Travis Jason Hollmann
    126 Hollmann
  5. Ramon Elias Sosa
    28 Sosa
  6. Hira Abbas Rizvi
    122 Rizvi
  7. Natally Horvat
    101 Horvat
  8. Jennifer Lynn Sauter
    124 Sauter
  9. Sohrab Prakash Shah
    86 Shah
  10. Christopher Joseph Fong
    42 Fong
  11. Katia Ventura
    24 Ventura
  12. Jacklynn V Egger
    68 Egger
  13. Francis M Bodd
    21 Bodd
  14. Soo Ryum Yang
    75 Yang
  15. Jia Luo
    27 Luo
  16. Andrew Michael Pagano
    14 Pagano
  17. Rami Sesha Vanguri
    15 Vanguri
  18. Kevin Michael Boehm
    13 Boehm