BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin Journal Article


Authors: Kshirsagar, M.; Yuan, H.; Ferres, J. L.; Leslie, C.
Article Title: BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
Abstract: We present a novel unsupervised deep learning approach called BindVAE, based on Dirichlet variational autoencoders, for jointly decoding multiple TF binding signals from open chromatin regions. BindVAE can disentangle an input DNA sequence into distinct latent factors that encode cell-type specific in vivo binding signals for individual TFs, composite patterns for TFs involved in cooperative binding, and genomic context surrounding the binding sites. On the task of retrieving the motifs of expressed TFs in a given cell type, BindVAE is competitive with existing motif discovery approaches. © 2022, The Author(s).
Keywords: transcription factor; motifs; dirichlet; k-mers; atac-seq; vae; variational autoencoders
Journal Title: Genome Biology
Volume: 23
ISSN: 1465-6906
Publisher: Biomed Central Ltd  
Date Published: 2022-08-15
Start Page: 174
Language: English
DOI: 10.1186/s13059-022-02723-w
PUBMED: 35971180
PROVIDER: scopus
PMCID: PMC9380350
DOI/URL:
Notes: Article -- Export Date: 1 September 2022 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Christina Leslie
    187 Leslie