Can bronchoscopically implanted anchored electromagnetic transponders be used to monitor tumor position and lung inflation during deep inspiration breath-hold lung radiotherapy? Journal Article


Authors: Harris, W.; Yorke, E.; Li, H.; Czmielewski, C.; Chawla, M.; Lee, R. P.; Hotca-Cho, A.; McKnight, D.; Rimner, A.; Lovelock, D. M.
Article Title: Can bronchoscopically implanted anchored electromagnetic transponders be used to monitor tumor position and lung inflation during deep inspiration breath-hold lung radiotherapy?
Abstract: Purpose: To evaluate the efficacy of using bronchoscopically implanted anchored electromagnetic transponders (EMTs) as surrogates for 1) tumor position and 2) repeatability of lung inflation during deep-inspiration breath-hold (DIBH) lung radiotherapy. Methods: Forty-one patients treated with either hypofractionated (HF) or conventional (CF) lung radiotherapy on an IRB-approved prospective protocol using coached DIBH were evaluated for this study. Three anchored EMTs were bronchoscopically implanted into small airways near or within the tumor. DIBH treatment was gated by tracking the EMT positions. Breath-hold cone-beam-CTs (CBCTs) were acquired prior to every HF treatment or weekly for CF patients. Retrospectively, rigid registrations between each CBCT and the breath-hold planning CT were performed to match to 1) spine, 2) EMTs and 3) tumor. Absolute differences in registration between EMTs and spine were analyzed to determine surrogacy of EMTs for lung inflation. Differences in registration between EMTs and the tumor were analyzed to determine surrogacy of EMTs for tumor position. The stability of the EMTs was evaluated by analyzing the difference between inter-EMT displacements recorded at treatment from that of the plan for the CF patients, as well as the geometric residual (GR) recorded at the time of treatment. Results: A total of 219 CBCTs were analyzed. The average differences between EMT centroid and spine registration among all CBCTs were 0.45±0.42 cm, 0.29±0.28 cm, and 0.18±0.15 cm in superior-inferior (SI), anterior-posterior (AP) and lateral directions, respectively. Only 59% of CBCTs had differences in registration < 0.5 cm for EMT centroid compared to spine, indicating that lung inflation is not reproducible from simulation to treatment. The average differences between EMT centroid and tumor registration among all CBCTs were 0.13±0.13 cm, 0.14±0.13 cm and 0.12±0.12 cm in SI, AP and lateral directions, respectively. Ninety-five percent of CBCTs resulted in a < 0.5 cm change between EMT centroid and tumor registration, indicating that EMT positions correspond well with tumor position during treatments. Six out of the seven recorded CF patients had average differences in inter-EMT displacements ≤0.26 cm and average GR ≤0.22 cm, indicating that the EMTs are stable throughout treatment. Conclusions: Bronchoscopically implanted anchored EMTs are good surrogates for tumor position and are reliable for maintaining tumor position when tracked during DIBH treatment, as long as the tumor size and shape are stable. Large differences in registration between EMTs and spine for many treatments suggest that lung inflation achieved at simulation is often not reproduced. © 2022 American Association of Physicists in Medicine.
Keywords: adult; clinical article; retrospective studies; cancer radiotherapy; prospective study; prospective studies; tumor volume; lung neoplasms; radiotherapy; patient monitoring; pathology; diagnostic imaging; retrospective study; simulation; lung tumor; tumors; spine; lung; radiotherapy planning, computer-assisted; breath holding; biological organs; airway; cone beam computed tomography; hypofractionated; breathing; cone-beam ct; procedures; tumor tracking; electromagnetic transponders; humans; human; male; female; article; radiotherapy planning system; lung radiotherapy; lung inflation; deep inspiration breath hold; lung dibh; transponders; average difference; breath-hold treatments; lung deep-inspiration breath-hold; plant cone
Journal Title: Medical Physics
Volume: 49
Issue: 4
ISSN: 0094-2405
Publisher: American Association of Physicists in Medicine  
Date Published: 2022-04-01
Start Page: 2621
End Page: 2630
Language: English
DOI: 10.1002/mp.15565
PUBMED: 35192211
PROVIDER: scopus
PMCID: PMC9007909
DOI/URL:
Notes: Article -- Export Date: 25 April 2022 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Mohit Chawla
    48 Chawla
  2. Robert Piljae Lee
    31 Lee
  3. Andreas Rimner
    524 Rimner
  4. Ellen D Yorke
    450 Yorke
  5. Dale M Lovelock
    183 Lovelock
  6. Henry Li
    14 Li
  7. Wendy Harris
    10 Harris