Abstract: |
In this paper, we present a network-based clustering method, called vector Wasserstein clustering (vWCluster), based on the vector-valued Wasserstein distance derived from optimal mass transport (OMT) theory. This approach allows for the natural integration of multi-layer representations of data in a given network from which one derives clusters via a hierarchical clustering approach. In this study, we applied the methodology to multi-omics data from the two largest breast cancer studies. The resultant clusters showed significantly different survival rates in Kaplan-Meier analysis in both datasets. CIBERSORT scores were compared among the identified clusters. Out of the 22 CIBERSORT immune cell types, 9 were commonly significantly different in both datasets, suggesting the difference of tumor immune microenvironment in the clusters. vWCluster can aggregate multi-omics data represented as a vectorial form in a network with multiple layers, taking into account the concordant effect of heterogeneous data, and further identify subgroups of tumors in terms of mortality. © 2022 Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |