Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate Journal Article


Authors: Liu, S.; Paknejad, N.; Zhu, L.; Kihara, Y.; Ray, M.; Chun, J.; Liu, W.; Hite, R. K.; Huang, X. Y.
Article Title: Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate
Abstract: Lysophospholipids are bioactive lipids and can signal through G-protein-coupled receptors (GPCRs). The best studied lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). The mechanisms of lysophospholipid recognition by an active GPCR, and the activations of lysophospholipid GPCR–G-protein complexes remain unclear. Here we report single-particle cryo-EM structures of human S1P receptor 1 (S1P1) and heterotrimeric Gi complexes formed with bound S1P or the multiple sclerosis (MS) treatment drug Siponimod, as well as human LPA receptor 1 (LPA1) and Gi complexes in the presence of LPA. Our structural and functional data provide insights into how LPA and S1P adopt different conformations to interact with their cognate GPCRs, the selectivity of the homologous lipid GPCRs for S1P versus LPA, and the different activation mechanisms of these GPCRs by LPA and S1P. Our studies also reveal specific optimization strategies to improve the MS-treating S1P1-targeting drugs. © 2022, The Author(s).
Keywords: lipid; recognition; optimization; signal
Journal Title: Nature Communications
Volume: 13
ISSN: 2041-1723
Publisher: Nature Publishing Group  
Date Published: 2022-02-08
Start Page: 731
Language: English
DOI: 10.1038/s41467-022-28417-2
PUBMED: 35136060
PROVIDER: scopus
PMCID: PMC8826421
DOI/URL:
Notes: Article -- Export Date: 1 March 2022 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Richard Kevin Hite
    25 Hite