Authors: | Miranda, J.; Tan, G. X. V.; Fernandes, M. C.; Yildirim, O.; Sims, J. A.; Araujo-Filho, J. D. A. B.; de M. Machado, F. A.; Assuncao-Jr, A. N.; Nomura, C. H.; Horvat, N. |
Review Title: | Rectal MRI radiomics for predicting pathological complete response: Where we are |
Abstract: | Radiomics using rectal MRI radiomics has emerged as a promising approach in predicting pathological complete response. In this study, we present a typical pipeline of a radiomics analysis and review recent studies, exploring applications, development of radiomics methodologies and model construction in pCR prediction. Finally, we will offer our opinion about the future and discuss the next steps of rectal MRI radiomics for predicting pCR. © 2021 Elsevier Inc. |
Keywords: | neoadjuvant therapy; magnetic resonance imaging; forecasting; rectal neoplasms; complete response; machine learning; rectal neoplasm; radiomics; application development; model construction; radiomic |
Journal Title: | Clinical Imaging |
Volume: | 82 |
ISSN: | 0899-7071 |
Publisher: | Elsevier Inc. |
Date Published: | 2022-02-01 |
Start Page: | 141 |
End Page: | 149 |
Language: | English |
DOI: | 10.1016/j.clinimag.2021.10.005 |
PROVIDER: | scopus |
PUBMED: | 34826772 |
DOI/URL: | |
Notes: | Review -- Export Date: 1 December 2021 -- Source: Scopus |