Serine biosynthesis is a metabolic vulnerability in FLT3-ITD-driven acute myeloid leukemia Journal Article


Authors: Bjelosevic, S.; Gruber, E.; Newbold, A.; Shembrey, C.; Devlin, J. R.; Hogg, S. J.; Kats, L.; Todorovski, I.; Fan, Z.; Abrehart, T. C.; Pomilio, G.; Wei, A.; Gregory, G. P.; Vervoort, S. J.; Brown, K. K.; Johnstone, R. W.
Article Title: Serine biosynthesis is a metabolic vulnerability in FLT3-ITD-driven acute myeloid leukemia
Abstract: Internal tandem duplication of the FMS-like tyrosine kinase 3 gene (FLT3-ITD) occurs in 30% of all acute myeloid leukemias (AML). Limited clinical efficacy of FLT3 inhibitors highlights the need for alternative therapeutic modalities in this subset of disease. Using human and murine models of FLT3-ITD-driven AML, we demonstrate that FLT3-ITD promotes serine synthesis and uptake via ATF4-dependent transcriptional regulation of genes in the de novo serine biosynthesis pathway and neutral amino acid transport. Genetic or pharmacologic inhibition of PHGDH, the rate-limiting enzyme of de novo serine biosynthesis, selectively inhibited proliferation of FLT3-ITD AMLs in vitro and in vivo. Moreover, pharmacologic inhibition of PHGDH sensitized FLT3-ITD AMLs to the standard-of-care chemotherapeutic cytarabine. Collectively, these data reveal novel insights into FLT3-ITD-induced metabolic reprogramming and reveal a targetable vulnerability in FLT3-ITD AML. SIGNIFICANCE: FLT3-ITD mutations are common in AML and are associated with poor prognosis. We show that FLT3-ITD stimulates serine biosynthesis, thereby rendering FLT3-ITD-driven leukemias dependent upon serine for proliferation and survival. This metabolic dependency can be exploited pharmacologically to sensitize FLT3-ITD-driven AMLs to chemotherapy.
Keywords: mutations; activation; inhibition; pathway; acute myelogenous leukemia; flt3; prognostic relevance; one-carbon metabolism; purine synthesis; mtorc1 activity
Journal Title: Cancer Discovery
Volume: 11
Issue: 6
ISSN: 2159-8274
Publisher: American Association for Cancer Research  
Date Published: 2021-06-01
Start Page: 1582
End Page: 1599
Language: English
ACCESSION: WOS:000659290300037
DOI: 10.1158/2159-8290.Cd-20-0738
PROVIDER: wos
PUBMED: 33436370
Notes: Article -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Simon John Hogg
    26 Hogg