Single- and multi-fraction stereotactic radiosurgery dose tolerances of the optic pathways Journal Article


Authors: Milano, M. T.; Grimm, J.; Soltys, S. G.; Yorke, E.; Moiseenko, V.; Tomé, W. A.; Sahgal, A.; Xue, J.; Ma, L.; Solberg, T. D.; Kirkpatrick, J. P.; Constine, L. S.; Flickinger, J. C.; Marks, L. B.; El Naqa, I.
Article Title: Single- and multi-fraction stereotactic radiosurgery dose tolerances of the optic pathways
Abstract: Purpose: Dosimetric and clinical predictors of radiation-induced optic nerve/chiasm neuropathy (RION) after single-fraction stereotactic radiosurgery (SRS) or hypofractionated (2-5 fractions) radiosurgery (fSRS) were analyzed from pooled data that were extracted from published reports (PubMed indexed from 1990 to June 2015). This study was undertaken as part of the American Association of Physicists in Medicine Working Group on Stereotactic Body Radiotherapy, investigating normal tissue complication probability (NTCP) after hypofractionated radiation. Methods and Materials: Eligible studies described dose delivered to optic nerve/chiasm and provided crude or actuarial toxicity risks, with visual endpoints (ie, loss of visual acuity, alterations in visual fields, and/or blindness/complete vision loss). Studies of patients with optic nerve sheath tumors, optic nerve gliomas, or ocular/uveal melanoma were excluded to obviate direct tumor effects on visual outcomes, as were studies not specifying causes of vision loss (ie, tumor progression vs RION). Results: Thirty-four studies (1578 patients) were analyzed. Histologies included pituitary adenoma, cavernous sinus meningioma, craniopharyngioma, and malignant skull base tumors. Prior resection (76% of patients) did not correlate with RION risk (P =.66). Prior irradiation (6% of patients) was associated with a crude 10-fold increased RION risk versus no prior radiation therapy. In patients with no prior radiation therapy receiving SRS/fSRS in 1-5 fractions, optic apparatus maximum point doses resulting in <1% RION risks include 12 Gy in 1 fraction (which is greater than our recommendation of 10 Gy in 1 fraction), 20 Gy in 3 fractions, and 25 Gy in 5 fractions. Omitting multi-fraction data (and thereby eliminating uncertainties associated with dose conversions), a single-fraction dose of 10 Gy was associated with a 1% RION risk. Insufficient details precluded modeling of NTCP risks after prior radiation therapy. Conclusions: Optic apparatus NTCP and tolerance doses after single- and multi-fraction stereotactic radiosurgery are presented. Additional standardized dosimetric and toxicity reporting is needed to facilitate future pooled analyses and better define RION NTCP after SRS/fSRS. © 2018 Elsevier Inc.
Keywords: radiation; radiotherapy; tumors; dosimetry; vision; stereotactic body radiotherapy; stereotactic radiosurgery; toxicity; eye protection; normal tissue complication probabilities; risks; tumor progressions; craniopharyngiomas; methods and materials; clinical predictors; optic nerve gliomas
Journal Title: International Journal of Radiation Oncology, Biology, Physics
Volume: 110
Issue: 1
ISSN: 0360-3016
Publisher: Elsevier Inc.  
Date Published: 2021-05-01
Start Page: 87
End Page: 99
Language: English
DOI: 10.1016/j.ijrobp.2018.01.053
PUBMED: 29534899
PROVIDER: scopus
PMCID: PMC9479557
DOI/URL:
Notes: Article -- Export Date: 3 May 2021 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Ellen D Yorke
    450 Yorke