Strategies to improve the sensitivity and ranking ability of neoantigen prediction methods: Report on the results of the Tumor nEoantigen SeLection Alliance (TESLA) Meeting Abstract


Authors: Wells, D. K.; Dang, K.; Hubbard-Lucey, V. M.; Sheehan, K. C.; Lamb, A.; Ward, J. P.; Sidney, J.; Blazquez, A. B.; Rech, A. J.; Zaretsky, J.; Comin-Anduix, B.; Ng, A. H.; Chour, W.; Yu, T. V.; Rizvi, H.; Chen, J.; Manning, P.; Merghoub, T.; Guinney, J.; Kolom, A.; Selinsky, C.; Ribas, A.; Hellmann, M. D.; Schumacher, T. N.; Hacohen, N.; Kvistborg, P.; Sette, A.; Heath, J. R.; Bhardwaj, N.; Ramsdell, F.; Schreiber, R. D.; Defranoux, N. A.; and TESLA Consortium
Abstract Title: Strategies to improve the sensitivity and ranking ability of neoantigen prediction methods: Report on the results of the Tumor nEoantigen SeLection Alliance (TESLA)
Meeting Title: 111th Annual Meeting of the American Association for Cancer Research (AACR)
Journal Title: Cancer Research
Volume: 80
Issue: 16 Suppl.
Meeting Dates: 2020 Apr 27-28/Jun 22-24
Meeting Location: Philadelphia, PA
ISSN: 0008-5472
Publisher: American Association for Cancer Research  
Date Published: 2020-08-01
Language: English
ACCESSION: WOS:000590059301036
DOI: 10.1158/1538-7445.Am2020-3210
PROVIDER: wos
Notes: Meeting Abstract: 3210 -- Due to COVID-19 pandemic, the conference was held virtually -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Taha Merghoub
    364 Merghoub
  2. Matthew David Hellmann
    412 Hellmann
  3. Hira Abbas Rizvi
    123 Rizvi