SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance Journal Article


Authors: Fazio, M.; van Rooijen, E.; Dang, M.; van de Hoek, G.; Ablain, J.; Mito, J. K.; Yang, S.; Thomas, A.; Michael, J.; Fabo, T.; Modhurima, R.; Pessina, P.; Kaufman, C. K.; Zhou, Y.; White, R. M.; Zon, L. I.
Article Title: SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance
Abstract: Recent genomic and scRNA-seq analyses of melanoma demonstrated a lack of recurrent genetic drivers of metastasis, while identifying common transcriptional states correlating with invasion or drug resistance. To test whether transcriptional adaptation can drive melanoma progression, we made use of a zebrafish mitfa:BRAFV600E;tp53-/-model, in which malignant progression is characterized by minimal genetic evolution. We undertook an overexpression-screen of 80 epigenetic/transcriptional regulators and found neural crest-mesenchyme developmental regulator SATB2 to accelerate aggressive melanoma development. Its overexpression induces invadopodia formation and invasion in zebrafish tumors and human melanoma cell lines. SATB2 binds and activates neural crest-regulators, including pdgfab and snai2. The transcriptional program induced by SATB2 overlaps with known MITFlowAXLhigh and AQP1+NGFR1high drug-resistant states and functionally drives enhanced tumor propagation and resistance to Vemurafenib in vivo. In summary, we show that melanoma transcriptional rewiring by SATB2 to a neural crest mesenchyme-like program can drive invasion and drug resistance in autochthonous tumors. © Fazio et al.
Journal Title: eLife
Volume: 10
ISSN: 2050-084X
Publisher: eLife Sciences Publications Ltd.  
Date Published: 2021-02-02
Start Page: e64370
Language: English
DOI: 10.7554/eLife.64370
PUBMED: 33527896
PROVIDER: scopus
PMCID: PMC7880683
DOI/URL:
Notes: Article -- Export Date: 1 April 2021 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Richard Mark White
    68 White