Abstract: |
Several cytosolic pattern-recognition receptors (PRRs) form multiprotein complexes called canonical inflammasomes in response to intracellular danger signals. Canonical inflammasomes recruit and activate caspase-1 (CASP1), which in turn cleaves and activates inflammatory cytokines and gasdermin D (GSDMD), inducing pyroptotic cell death. Inhibitors of the dipeptidyl peptidases DPP8 and DPP9 (DPP8/9) activate both the human NLRP1 and CARD8 inflammasomes. NLRP1 and CARD8 have different N-terminal regions but have similar C-terminal regions that undergo autoproteolysis to generate two non-covalently associated fragments. Here, we show that DPP8/9 inhibition activates a proteasomal degradation pathway that targets disordered and misfolded proteins for destruction. CARD8's N terminus contains a disordered region of ∼160 amino acids that is recognized and destroyed by this degradation pathway, thereby freeing its C-terminal fragment to activate CASP1 and induce pyroptosis. Thus, CARD8 serves as an alarm to signal the activation of a degradation pathway for disordered and misfolded proteins. © 2020 Inflammasomes are multiprotein complexes that detect intracellular danger signals and stimulate powerful immune responses. DPP8/9 inhibitors activate the CARD8 inflammasome through an unknown mechanism. Here, Chui et al. show that DPP8/9 inhibitors induce the degradation of many disordered and misfolded proteins. CARD8 has an N-terminal disordered region that is degraded upon DPP8/9 inhibition, triggering inflammasome formation. © 2020 |