Enhancer predictions and genome-wide regulatory circuits Review


Authors: Beer, M. A.; Shigaki, D.; Huangfu, D.
Review Title: Enhancer predictions and genome-wide regulatory circuits
Abstract: Spatiotemporal control of gene expression during development requires orchestrated activities of numerous enhancers, which are cis-regulatory DNA sequences that, when bound by transcription factors, support selective activation or repression of associated genes. Proper activation of enhancers is critical during embryonic development, adult tissue homeostasis, and regeneration, and inappropriate enhancer activity is often associated with pathological conditions such as cancer. Multiple consortia lsqbe.g., the Encyclopedia of DNA Elements (ENCODE) Consortium and National Institutes of Health Roadmap Epigenomics Mapping Consortiumrsqb and independent investigators have mapped putative regulatory regions in a large number of cell types and tissues, but the sequence determinants of cell-specific enhancers are not yet fully understood. Machine learning approaches trained on large sets of these regulatory regions can identify core transcription factor binding sites and generate quantitative predictions of enhancer activity and the impact of sequence variants on activity. Here, we review these computational methods in the context of enhancer prediction and gene regulatory network models specifying cell fate. © 2020 Annual Reviews Inc.. All rights reserved.
Journal Title: Annual Review of Genomics and Human Genetics
Volume: 21
ISSN: 1527-8204
Publisher: Annual Reviews  
Date Published: 2020-08-01
Start Page: 37
End Page: 54
Language: English
DOI: 10.1146/annurev-genom-121719-010946
PUBMED: 32443951
PROVIDER: scopus
PMCID: PMC7644210
DOI/URL:
Notes: Review -- Export Date: 1 October 2020 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Danwei Huangfu
    54 Huangfu