Abstract: |
Introduction: High-grade gliomas are among the most deadly of all cancer types and are also the most common malignant primary tumors of the CNS. Large-scale studies that have analyzed the transcriptional and translational expression patterns of glioma have found that the majority of these tumors can be categorized based on specific genomic anomalies. Genetically engineered mouse models (GEMMs) that represent the molecular subgroups of the human disease harbor a variety of molecular alterations that have been proven to drive gliomagenesis. These models provide an opportunity to assess the effects of novel therapies in the presence of specific molecular defects. Research using GEMMs, which are associated with these subclasses, allow researchers to assess drug efficacy by subclass. Areas covered: In this review, the authors discuss the histological and molecular characteristics of malignant gliomas, the therapies used to treat them and the animal models that closely recapitulate them. Expert opinion: It is likely that GEMMs that recapitulate the molecular character of human tumors will provide a more accurate prediction of individuals who may be more or less likely to benefit from specific therapies. This knowledge can be then used to drive clinical trial design and this, in turn, could lead to better therapeutic outcomes. © 2011 Informa UK, Ltd. |