Combined burden and functional impact tests for cancer driver discovery using DriverPower Journal Article


Authors: Shuai, S.; PCAWG Drivers and Functional Interpretation Working Group; Gallinger, S.; Stein, L.; & PCAWG Consortium
Contributors: Kahles, A.; Lehmann, K. V.; Liu, E. M.; Sander, C.; Abeshouse, A.; Al-Ahmadie, H.; Armenia, J.; Chen, H. W.; Davidson, N. R.; Gao, J.; Ghossein, R.; Giri, D. D.; Gundem, G.; Heins, Z.; Huse, J.; Iacobuzio-Donahue, C. A.; King, T. A.; Kundra, R.; Levine, D. A.; Ochoa, A.; Pastore, A.; Rätsch, G.; Reis-Filho, J.; Reuter, V.; Roehrl, M. H. A.; Sanchez-Vega, F.; Schultz, N.; Senbabaoglu, Y.; Singer, S.; Socci, N. D.; Stark, S. G.; Yellapantula, V. D.; Zhang, H.
Article Title: Combined burden and functional impact tests for cancer driver discovery using DriverPower
Abstract: The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower’s background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery. © 2020, The Author(s).
Keywords: mutation; genome; tumor; software; testing method; cancer
Journal Title: Nature Communications
Volume: 11
ISSN: 2041-1723
Publisher: Nature Publishing Group  
Date Published: 2020-02-05
Start Page: 734
Language: English
DOI: 10.1038/s41467-019-13929-1
PUBMED: 32024818
PROVIDER: scopus
PMCID: PMC7002750
DOI/URL:
Notes: Article -- Erratum issued, see DOI: 10.1038/s41467-022-32343-8 -- Export Date: 2 March 2020 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Ronald A Ghossein
    482 Ghossein
  2. Dilip D Giri
    184 Giri
  3. Douglas A Levine
    380 Levine
  4. Tari King
    186 King
  5. Samuel Singer
    337 Singer
  6. Jason T Huse
    143 Huse
  7. Nicholas D Socci
    266 Socci
  8. Erik Larsson
    11 Larsson
  9. Chris Sander
    210 Sander
  10. Victor Reuter
    1223 Reuter
  11. Jianjiong Gao
    132 Gao
  12. Nikolaus D Schultz
    486 Schultz
  13. Gunnar Ratsch
    68 Ratsch
  14. Andre Kahles
    31 Kahles
  15. Hsiao-Wei Chen
    30 Chen
  16. Kjong Van Stephan Fritz Lehmann
    22 Lehmann
  17. Stefan G Stark
    17 Stark
  18. Michael H Roehrl
    127 Roehrl
  19. Alessandro   Pastore
    55 Pastore
  20. Joshua   Armenia
    56 Armenia
  21. Zachary Joseph Heins
    22 Heins
  22. Ritika   Kundra
    88 Kundra
  23. Hongxin Zhang
    47 Zhang
  24. Angelica Ochoa
    30 Ochoa
  25. Gunes Gundem
    56 Gundem
  26. Minwei Liu
    24 Liu