Repression of transcription factor AP-2 alpha by PPARγ reveals a novel transcriptional circuit in basal-squamous bladder cancer Journal Article


Authors: Yamashita, H.; Kawasawa, Y. I.; Shuman, L.; Zheng, Z.; Tran, T.; Walter, V.; Warrick, J. I.; Chen, G.; Al-Ahmadie, H.; Kaag, M.; Wong, P. K.; Raman, J. D.; DeGraff, D. J.
Article Title: Repression of transcription factor AP-2 alpha by PPARγ reveals a novel transcriptional circuit in basal-squamous bladder cancer
Abstract: The discovery of bladder cancer transcriptional subtypes provides an opportunity to identify high risk patients, and tailor disease management. Recent studies suggest tumor heterogeneity contributes to regional differences in molecular subtype within the tumor, as well as during progression and following treatment. Nonetheless, the transcriptional drivers of the aggressive basal-squamous subtype remain unidentified. As PPARɣ has been repeatedly implicated in the luminal subtype of bladder cancer, we hypothesized inactivation of this transcriptional master regulator during progression results in increased expression of basal-squamous specific transcription factors (TFs) which act to drive aggressive behavior. We initiated a pharmacologic and RNA-seq-based screen to identify PPARɣ-repressed, basal-squamous specific TFs. Hierarchical clustering of RNA-seq data following treatment of three human bladder cancer cells with a PPARɣ agonist identified a number of TFs regulated by PPARɣ activation, several of which are implicated in urothelial and squamous differentiation. One PPARɣ-repressed TF implicated in squamous differentiation identified is Transcription Factor Activating Protein 2 alpha (TFAP2A). We show TFAP2A and its paralog TFAP2C are overexpressed in basal-squamous bladder cancer and in squamous areas of cystectomy samples, and that overexpression is associated with increased lymph node metastasis and distant recurrence, respectively. Biochemical analysis confirmed the ability of PPARɣ activation to repress TFAP2A, while PPARɣ antagonist and PPARɣ siRNA knockdown studies indicate the requirement of a functional receptor. In vivo tissue recombination studies show TFAP2A and TFAP2C promote tumor growth in line with the aggressive nature of basal-squamous bladder cancer. Our findings suggest PPARɣ inactivation, as well as TFAP2A and TFAP2C overexpression cooperate with other TFs to promote the basal-squamous transition during tumor progression. © 2019, The Author(s).
Keywords: controlled study; human tissue; unclassified drug; human cell; cancer recurrence; nonhuman; lymph node metastasis; animal tissue; gene overexpression; embryo; small interfering rna; in vivo study; bladder cancer; rna; gene repression; rat; peroxisome proliferator activated receptor gamma; rna sequence; aggression; peroxisome proliferator activated receptor gamma agonist; biochemical analysis; transcription factor ap 2; human; female; priority journal; article; defense mechanism; hierarchical clustering; transcription factor ap 2 alpha; 5637 cell line; sw780 cell line
Journal Title: Oncogenesis
Volume: 8
Issue: 12
ISSN: 2157-9024
Publisher: Nature Publishing Group  
Date Published: 2019-12-01
Start Page: 69
Language: English
DOI: 10.1038/s41389-019-0178-3
PROVIDER: scopus
PMCID: PMC6879593
PUBMED: 31772149
DOI/URL:
Notes: Article -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors