Genetic variants and cognitive functions in patients with brain tumors Journal Article


Authors: Correa, D. D.; Satagopan, J.; Martin, A.; Braun, E.; Kryza-Lacombe, M.; Cheung, K.; Sharma, A.; Dimitriadoy, S.; O'Connell, K.; Leong, S.; Karimi, S.; Lyo, J.; DeAngelis, L. M.; Orlow, I.
Article Title: Genetic variants and cognitive functions in patients with brain tumors
Abstract: BACKGROUND: Patients with brain tumors treated with radiotherapy (RT) and chemotherapy (CT) often experience cognitive dysfunction. We reported that single nucleotide polymorphisms (SNPs) in the APOE, COMT, and BDNF genes may influence cognition in brain tumor patients. In this study, we assessed whether genes associated with late-onset Alzheimer's disease (LOAD), inflammation, cholesterol transport, dopamine and myelin regulation, and DNA repair may influence cognitive outcome in this population. METHODS: One hundred and fifty brain tumor patients treated with RT ± CT or CT alone completed a neurocognitive assessment and provided a blood sample for genotyping. We genotyped genes/SNPs in these pathways: (i) LOAD risk/inflammation/cholesterol transport, (ii) dopamine regulation, (iii) myelin regulation, (iv) DNA repair, (v) blood-brain barrier disruption, (vi) cell cycle regulation, and (vii) response to oxidative stress. White matter (WM) abnormalities were rated on brain MRIs. RESULTS: Multivariable linear regression analysis with Bayesian shrinkage estimation of SNP effects, adjusting for relevant demographic, disease, and treatment variables, indicated strong associations (posterior association summary [PAS] ≥ 0.95) among tests of attention, executive functions, and memory and 33 SNPs in genes involved in: LOAD/inflammation/cholesterol transport (eg, PDE7A, IL-6), dopamine regulation (eg, DRD1, COMT), myelin repair (eg, TCF4), DNA repair (eg, RAD51), cell cycle regulation (eg, SESN1), and response to oxidative stress (eg, GSTP1). The SNPs were not significantly associated with WM abnormalities. CONCLUSION: This novel study suggests that polymorphisms in genes involved in aging and inflammation, dopamine, myelin and cell cycle regulation, and DNA repair and response to oxidative stress may be associated with cognitive outcome in patients with brain tumors. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Keywords: genes; cognitive; brain tumors; polymorphisms; snp
Journal Title: Neuro-Oncology
Volume: 21
Issue: 10
ISSN: 1522-8517
Publisher: Oxford University Press  
Date Published: 2019-10-01
Start Page: 1297
End Page: 1309
Language: English
DOI: 10.1093/neuonc/noz094
PUBMED: 31123752
PROVIDER: scopus
PMCID: PMC6784270
DOI/URL:
Notes: Article -- Export Date: 1 November 2019 -- Source: Scopus
Altmetric
Citation Impact
MSK Authors
  1. John Kyungjin Lyo
    38 Lyo
  2. Denise D Correa
    81 Correa
  3. Jaya M Satagopan
    141 Satagopan
  4. Sasan Karimi
    113 Karimi
  5. Irene Orlow
    240 Orlow
  6. Ajay P Sharma
    13 Sharma
  7. Kenneth   Cheung
    10 Cheung
  8. Siok Fun Leong
    9 Leong
  9. Axel Stephen Martin
    17 Martin
  10. Erica E Braun
    2 Braun