Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling Journal Article


Authors: Zhang, A. W.; O'Flanagan, C.; Chavez, E. A.; Lim, J. L. P.; Ceglia, N.; McPherson, A.; Wiens, M.; Walters, P.; Chan, T.; Hewitson, B.; Lai, D.; Mottok, A.; Sarkozy, C.; Chong, L.; Aoki, T.; Wang, X.; Weng, A. P.; McAlpine, J. N.; Aparicio, S.; Steidl, C.; Campbell, K. R.; Shah, S. P.
Article Title: Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
Abstract: Single-cell RNA sequencing has enabled the decomposition of complex tissues into functionally distinct cell types. Often, investigators wish to assign cells to cell types through unsupervised clustering followed by manual annotation or via 'mapping' to existing data. However, manual interpretation scales poorly to large datasets, mapping approaches require purified or pre-annotated data and both are prone to batch effects. To overcome these issues, we present CellAssign, a probabilistic model that leverages prior knowledge of cell-type marker genes to annotate single-cell RNA sequencing data into predefined or de novo cell types. CellAssign automates the process of assigning cells in a highly scalable manner across large datasets while controlling for batch and sample effects. We demonstrate the advantages of CellAssign through extensive simulations and analysis of tumor microenvironment composition in high-grade serous ovarian cancer and follicular lymphoma.
Journal Title: Nature Methods
Volume: 16
Issue: 10
ISSN: 1548-7091
Publisher: Nature Publishing Group  
Date Published: 2019-10-01
Start Page: 1007
End Page: 1015
Language: English
DOI: 10.1038/s41592-019-0529-1
PUBMED: 31501550
PROVIDER: scopus
PMCID: PMC7485597
DOI/URL:
Notes: Article -- Export Date: 1 November 2019 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Sohrab Prakash Shah
    86 Shah
  2. Jamie Lim
    9 Lim
  3. Allen Zhang
    6 Zhang
  4. Nicholas Ceglia
    21 Ceglia