Abstract: |
A multitude of signals are coordinated to maintain self-renewal in embryonic stem cells (ESCs). To unravel the essential internal and external signals required for sustaining the ESC state, we expand upon a set of ESC pluripotency-associated phosphoregulators (PRs) identified previously by short hairpin RNA (shRNA) screening. In addition to the previously described Aurka, we identify 4 additional PRs (Bub1b, Chek1, Ppm1g, and Ppp2r1b) whose depletion compromises self-renewal and leads to consequent differentiation. Global gene expression profiling and computational analyses reveal that knockdown of the 5 PRs leads to DNA damage/genome instability, activating p53 and culminating in ESC differentiation. Similarly, depletion of genome integrity-associated genes involved in DNA replication and checkpoint, mRNA processing, and Charcot-Marie-Tooth disease lead to compromise of ESC self-renewal via an increase in p53 activity. Our studies demonstrate an essential link between genomic integrity and developmental cell fate regulation in ESCs. Su et al. integrate system analyses with functional genomics screening to identify five phosphoregulators (PRs) that are indispensable for ESC self-renewal. Loss of genome stability control pathways impairs ESC self-renewal, activates p53, and promotes ESC differentiation. These findings suggest that maintenance of genome integrity is essential for ESC self-renewal. © 2019 The Author(s) |