Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification Journal Article


Authors: Bulik-Sullivan, B.; Busby, J.; Palmer, C. D.; Davis, M. J.; Murphy, T.; Clark, A.; Busby, M.; Duke, F.; Yang, A.; Young, L.; Ojo, N. C.; Caldwell, K.; Abhyankar, J.; Boucher, T.; Hart, M. G.; Makarov, V.; De Montpreville, V. T.; Mercier, O.; Chan, T. A.; Scagliotti, G.; Bironzo, P.; Novello, S.; Karachaliou, N.; Rosell, R.; Anderson, I.; Gabrail, N.; Hrom, J.; Limvarapuss, C.; Choquette, K.; Spira, A.; Rousseau, R.; Voong, C.; Rizvi, N. A.; Fadel, E.; Frattini, M.; Jooss, K.; Skoberne, M.; Francis, J.; Yelensky, R.
Article Title: Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification
Abstract: Neoantigens, which are expressed on tumor cells, are one of the main targets of an effective antitumor T-cell response. Cancer immunotherapies to target neoantigens are of growing interest and are in early human trials, but methods to identify neoantigens either require invasive or difficult-to-obtain clinical specimens, require the screening of hundreds to thousands of synthetic peptides or tandem minigenes, or are only relevant to specific human leukocyte antigen (HLA) alleles. We apply deep learning to a large (N = 74 patients) HLA peptide and genomic dataset from various human tumors to create a computational model of antigen presentation for neoantigen prediction. We show that our model, named EDGE, increases the positive predictive value of HLA antigen prediction by up to ninefold. We apply EDGE to enable identification of neoantigens and neoantigen-reactive T cells using routine clinical specimens and small numbers of synthetic peptides for most common HLA alleles. EDGE could enable an improved ability to develop neoantigen-targeted immunotherapies for cancer patients. © 2019, Nature Publishing Group. All rights reserved.
Keywords: mass spectrometry; cancer immunotherapy; genes; antigen presentation; antigens; tumors; diagnosis; peptides; positive predictive values; diseases; t-cells; t-cell response; synthetic peptide; drug products; cancer patients; human leukocyte antigen; computational model; deep learning
Journal Title: Nature Biotechnology
Volume: 37
Issue: 1
ISSN: 1087-0156
Publisher: Nature Publishing Group  
Date Published: 2018-12-17
Start Page: 55
End Page: 63
Language: English
DOI: 10.1038/nbt.4313
PROVIDER: scopus
PUBMED: 30556813
DOI/URL:
Notes: Export Date: 1 February 2019 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Timothy Chan
    317 Chan
  2. Vladimir Makarov
    57 Makarov