Large-scale analysis of water stability in bromodomain binding pockets with grand canonical Monte Carlo Journal Article


Authors: Aldeghi, M.; Ross, G. A.; Bodkin, M. J.; Essex, J. W.; Knapp, S.; Biggin, P. C.
Article Title: Large-scale analysis of water stability in bromodomain binding pockets with grand canonical Monte Carlo
Abstract: Conserved water molecules are of interest in drug design, as displacement of such waters can lead to higher affinity ligands, and in some cases, contribute towards selectivity. Bromodomains, small protein domains involved in the epigenetic regulation of gene transcription, display a network of four conserved water molecules in their binding pockets and have recently been the focus of intense medicinal chemistry efforts. Understanding why certain bromodomains have displaceable water molecules and others do not is extremely challenging, and it remains unclear which water molecules in a given bromodomain can be targeted for displacement. Here we estimate the stability of the conserved water molecules in 35 bromodomains via binding free energy calculations using all-atom grand canonical Monte Carlo simulations. Encouraging quantitative agreement to the available experimental evidence is found. We thus discuss the expected ease of water displacement in different bromodomains and the implications for ligand selectivity.
Keywords: classification; protein; drug design; thermodynamics; identification; inhibitors; sites; ligand-binding; free-energies; side-chain
Journal Title: Communications Chemistry
Volume: 1
ISSN: 2399-3669
Publisher: Nature Publishing Group  
Date Published: 2018-04-05
Start Page: 19
Language: English
ACCESSION: WOS:000433894100002
DOI: 10.1038/s42004-018-0019-x
PROVIDER: wos
PMCID: PMC5978690
PUBMED: 29863194
Notes: Article -- UNSP 19 -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Gregory Antonio Ross
    5 Ross