ATR is a multifunctional regulator of male mouse meiosis Journal Article

Authors: Widger, A.; Mahadevaiah, S. K.; Lange, J.; Elinati, E.; Zohren, J.; Hirota, T.; Pacheco, S.; Maldonado-Linares, A.; Stanzione, M.; Ojarikre, O.; Maciulyte, V.; de Rooij, D. G.; Tóth, A.; Roig, I.; Keeney, S.; Turner, J. M. A.
Article Title: ATR is a multifunctional regulator of male mouse meiosis
Abstract: Meiotic cells undergo genetic exchange between homologs through programmed DNA double-strand break (DSB) formation, recombination and synapsis. In mice, the DNA damage-regulated phosphatidylinositol-3-kinase-like kinase (PIKK) ATM regulates all of these processes. However, the meiotic functions of the PIKK ATR have remained elusive, because germline-specific depletion of this kinase is challenging. Here we uncover roles for ATR in male mouse prophase I progression. ATR deletion causes chromosome axis fragmentation and germ cell elimination at mid pachynema. This elimination cannot be rescued by deletion of ATM and the third DNA damage-regulated PIKK, PRKDC, consistent with the existence of a PIKK-independent surveillance mechanism in the mammalian germline. ATR is required for synapsis, in a manner genetically dissociable from DSB formation. ATR also regulates loading of recombinases RAD51 and DMC1 to DSBs and recombination focus dynamics on synapsed and asynapsed chromosomes. Our studies reveal ATR as a critical regulator of mouse meiosis. © 2018 The Author(s).
Keywords: mammalia; mus; synapsis
Journal Title: Nature Communications
Volume: 9
ISSN: 2041-1723
Publisher: Nature Publishing Group  
Date Published: 2018-07-05
Start Page: 2621
Language: English
DOI: 10.1038/s41467-018-04850-0
PROVIDER: scopus
PMCID: PMC6033951
PUBMED: 29976923
Notes: Article -- Export Date: 1 August 2018 -- Source: Scopus
Citation Impact
MSK Authors
  1. Scott N Keeney
    113 Keeney
  2. Julian Lange
    16 Lange