Comprehensive characterization of cancer driver genes and mutations Journal Article


Authors: Bailey, M. H.; Tokheim, C.; Porta-Pardo, E.; Sengupta, S.; Bertrand, D.; Weerasinghe, A.; Colaprico, A.; Wendl, M. C.; Kim, J.; Reardon, B.; Ng, P. K. S.; Jeong, K. J.; Cao, S.; Wang, Z.; Gao, J.; Gao, Q.; Wang, F.; Liu, E. M.; Mularoni, L.; Rubio-Perez, C.; Nagarajan, N.; Cortés-Ciriano, I.; Zhou, D. C.; Liang, W. W.; Hess, J. M.; Yellapantula, V. D.; Tamborero, D.; Gonzalez-Perez, A.; Suphavilai, C.; Ko, J. Y.; Khurana, E.; Park, P. J.; Van Allen, E. M.; Liang, H.; The MC3 Working Group; The Cancer Genome Atlas Research Network; Lawrence, M. S.; Godzik, A.; Lopez-Bigas, N.; Stuart, J.; Wheeler, D.; Getz, G.; Chen, K.; Lazar, A. J.; Mills, G. B.; Karchin, R.; Ding, L.
Article Title: Comprehensive characterization of cancer driver genes and mutations
Abstract: Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations. We identify 299 driver genes with implications regarding their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified >3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental validation confirmed 60%–85% of predicted mutations as likely drivers. We found that >300 MSI tumors are associated with high PD-1/PD-L1, and 57% of tumors analyzed harbor putative clinically actionable events. Our study represents the most comprehensive discovery of cancer genes and mutations to date and will serve as a blueprint for future biological and clinical endeavors. A comprehensive analysis of oncogenic driver genes and mutations in >9,000 tumors across 33 cancer types highlights the prevalence of clinically actionable cancer driver events in TCGA tumor samples. © 2018
Keywords: controlled study; gene mutation; gene sequence; pathogenesis; genetic analysis; oncology; cancer genetics; genome analysis; structure analysis; gene structure; programmed death 1 ligand 1; programmed death 1 receptor; exome; human; priority journal; article; malignant neoplasm; driver gene discovery; mutations of clinical relevance
Journal Title: Cell
Volume: 173
Issue: 2
ISSN: 0092-8674
Publisher: Cell Press  
Date Published: 2018-04-05
Start Page: 371
End Page: 385.e18
Language: English
DOI: 10.1016/j.cell.2018.02.060
PROVIDER: scopus
PUBMED: 29625053
PMCID: PMC6029450
DOI/URL:
Notes: Article -- Export Date: 1 May 2018 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Jianjiong Gao
    132 Gao