Integration of multi-omics data for integrative gene regulatory network inference Journal Article


Authors: Zarayeneh, N.; Ko, E.; Oh, J. H.; Suh, S.; Liu, C.; Gao, J.; Kim, D.; Kang, M.
Article Title: Integration of multi-omics data for integrative gene regulatory network inference
Abstract: Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called 'multi-omics data', that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN's capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed. Copyright © 2017 Inderscience Enterprises Ltd.
Keywords: data integration; multi-omics data; gene regulatory network inference
Journal Title: International Journal of Data Mining and Bioinformatics
Volume: 18
Issue: 3
ISSN: 1748-5673
Publisher: Inderscience Publishers  
Date Published: 2017-01-01
Start Page: 223
End Page: 239
Language: English
DOI: 10.1504/IJDMB.2017.10008266
PROVIDER: scopus
PMCID: PMC5771269
PUBMED: 29354189
DOI/URL:
Notes: Conference Paper -- Export Date: 2 November 2017 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Jung Hun Oh
    187 Oh