AACR Project GENIE: Powering precision medicine through an international consortium Journal Article


Author: The AACR Project GENIE Consortium
Contributors: Baselga, J.; Berger, M. F.; Chakravarty, D.; Gao, J.; Gardos, S.; Gross, B. E.; Heins, Z. J.; Hyman, D. M.; Kandoth, C.; Kundra, R.; Ladanyi, M.; Sawyers, C. L.; Schultz, N.; Solit, D. B.; Taylor, B. S.; Thomas, S. B.; Zehir, A.; Zhang, H.
Article Title: AACR Project GENIE: Powering precision medicine through an international consortium
Abstract: The AACR Project GENIE is an international data-sharing consortium focused on generating an evidence base for precision cancer medicine by integrating clinicalgrade cancer genomic data with clinical outcome data for tens of thousands of cancer patients treated at multiple institutions worldwide. In conjunction with the first public data release from approximately 19,000 samples, we describe the goals, structure, and data standards of the consortium and report conclusions from high-level analysis of the initial phase of genomic data. We also provide examples of the clinical utility of GENIE data, such as an estimate of clinical actionability across multiple cancer types (> 30%) and prediction of accrual rates to the NCI-MATCH trial that accurately reflect recently reported actual match rates. The GENIE database is expected to grow to > 100,000 samples within 5 years and should serve as a powerful tool for precision cancer medicine. SIGNIFICANCE: The AACR Project GENIE aims to catalyze sharing of integrated genomic and clinical datasets across multiple institutions worldwide, and thereby enable precision cancer medicine research, including the identification of novel therapeutic targets, design of biomarker-driven clinical trials, and identification of genomic determinants of response to therapy.
Keywords: oncology; cancer
Journal Title: Cancer Discovery
Volume: 7
Issue: 8
ISSN: 2159-8274
Publisher: American Association for Cancer Research  
Date Published: 2017-08-01
Start Page: 818
End Page: 831
Language: English
ACCESSION: WOS:000406676000022
DOI: 10.1158/2159-8290.cd-17-0151
PROVIDER: wos
PUBMED: 28572459
PMCID: PMC5611790
Notes: Article -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Charles L Sawyers
    225 Sawyers
  2. David Solit
    778 Solit
  3. Marc Ladanyi
    1326 Ladanyi
  4. David Hyman
    354 Hyman
  5. Ahmet Zehir
    343 Zehir
  6. Michael Forman Berger
    764 Berger
  7. Jianjiong Gao
    132 Gao
  8. Barry Stephen Taylor
    238 Taylor
  9. Nikolaus D Schultz
    486 Schultz
  10. Benjamin E Gross
    44 Gross
  11. Stuart M Gardos
    21 Gardos
  12. Jose T Baselga
    484 Baselga
  13. Cyriac Kandoth
    31 Kandoth
  14. Stacy Bridget Thomas
    6 Thomas
  15. Zachary Joseph Heins
    22 Heins
  16. Ritika   Kundra
    88 Kundra
  17. Hongxin Zhang
    47 Zhang