Abstract: |
The primary function of activated T lymphocytes is to produce various cytokines necessary to elicit an immune response; these cytokines include interleukin-2 (IL-2), interleukin-4, and granulocyte-macrophage colony- stimulating factor (GMCSF). Steroid hormones and vitamin A and D3 metabolites act to repress the expression of cytokines. 1,25- Dihydroxyvitamin D3 (1,25-(OH)2D3) down-modulates activated IL-2 expression at the level transcription, through direct antagonism of the transactivating complex NFAT-1/AP-1 by the vitamin D3 receptor (VDR). We report here that GMCSF transcription in Jurkat T cells is also directly repressed by 1,25-(OH)2D3 and VDR. Among four NFAT/AP-1 elements in the GMCSF enhancer, we have focused on one such element that when multimerized, is sufficient in mediating both activation by NFAT-1 and AP-1 and repression in response to 1,25-(OH)2D3. Although this element does not contain any recognizable vitamin D response elements (VDREs), high affinity DNA binding by recombinant VDR is observed. In contrast to VDR interactions with positive VDREs, this binding is independent of VDR's heterodimeric partner, the retinoid X receptor. Moreover, VDR appears to bind the GMCSF element as an apparent monomer in vitro. Protease digestion patterns of bound VDR, and receptor mutations affecting DNA binding and dimerization, demonstrate that the receptor binds to the negative site in a distinct conformation relative to a positive VDRE, suggesting that the DNA element itself acts as an allosteric effector of VDR function. This altered conformation may account for VDR's action as a repressing rather than activating factor at this locus. |